
©©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Published article:

T. R. B. Kushal and M. S. Illindala, “Decision Support Framework for Resilience-Oriented Cost-Effective Distributed Generation
Expansion in Power Systems,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1246–1254, 2021, doi: 10.1109/TIA.2020.3047595.



Decision Support Framework for
Resilience-Oriented Cost-Effective Distributed

Generation Expansion in Power Systems
Tazim Ridwan Billah Kushal

Student Member, IEEE
The Ohio State University

2015 Neil Ave, Dreese Lab 205
Columbus, OH 43210, USA

kushal.1@osu.edu

Mahesh S. Illindala
Senior Member, IEEE

The Ohio State University
2015 Neil Ave, Dreese Lab 205

Columbus, OH 43210, USA
millindala@ieee.org

Abstract—Resilience of electricity grids to rare but severely
disruptive events, such as natural disasters, has emerged in
recent years as an important aspect in power system planning.
Development of resilience-oriented techniques are needed due to
the limitations of reliability-oriented methods in addressing large
unexpected outages. This paper presents a novel decision analysis
approach to enhance the resilience of a power distribution
system by leveraging the distributed nature of solar photovoltaic
(PV) and battery energy storage system (BESS) resources. The
proposed decision-making framework uses analytic hierarchy
process (AHP) to evaluate different possible allocations of PV and
BESS resources to load buses for multiple contingencies based on
resilience enhancement and cost. Each allocation plan provides
the size of PV arrays and BESS units to be installed at each
bus within the distribution system. A deterministic formulation
ranks line outage scenarios based on unserved load. The trade-
off between cost and resilience is modeled via cost-effectiveness
analysis (CEA) that indicates the preferability of each allocation
plan. The main contribution of this paper is the development
of an adaptable and computationally feasible decision support
framework to determine cost-effective configurations of PV
arrays and BESSs for mitigating the effects of power line
outage contingencies. To evaluate the proposed framework, a
case study is carried out on the IEEE 33-bus radial distribution
system. The results show that the proposed method can offer
effective guidance to the planner for making informed investment
decisions and achieving cost-effective resilience enhancement.

Index Terms—Decision support systems, distributed genera-
tion, power system planning, resilience, renewable energy

I. INTRODUCTION

Traditional electric power systems are designed to operate
during certain contingencies based on the reliability criteria
of security and adequacy. In reliability-oriented planning, ex-
pected failures with predictable impacts are modeled stochas-
tically using metrics such as System Average Interruption
Duration Index (SAIDI) and System Average Interruption
Frequency Index (SAIFI), although the exact moment of occur-
rence is not known in advance [1]. When planning for failure
scenarios, more probable N − 1 contingencies are prioritized
over more numerous but less probable N − k contingencies
[2]. However, catastrophic events such as natural disasters or

deliberate attacks, which occur rarely but have a large and un-
predictable impact, present a challenge to this reliability-based
planning of power systems. According to data from the North
American Electric Reliability Council (NERC), 933 blackouts
were reported between 1984 and 2006, each affecting tens
or even hundreds of thousands of customers [3]. Weather-
related events can cause massive disruption of the grid in
the form of infrastructure damage and service interruption.
In the period 2003-2012, over 50,000 U.S. customers were
impacted by 679 power outages due to weather-related events
[4]. Hurricane Harvey was estimated to have caused $125
billion in total damages and power outage to about 220,000
customers [5]. Several Caribbean islands and the U.S. state of
Florida suffered extensive damage from Hurricane Irma, which
caused widespread destruction of power lines and almost total
loss of electricity in Puerto Rico [6]. Aside from physical
events, modern industrial control systems such as the power
grid also present cybersecurity challenges due to the possibility
of malicious cyber attacks [7]. The modernization of the grid
and its transformation into a cyber-physical system means that
physical disruption can also be caused by cyber attacks, such
as those injecting false data into communications to impact
operation [8]–[10]. Significance of cyber threats to power
grid operation is demonstrated by the recent BlackEnergy
and Triton/TRISIS malware attacks against targets in Ukraine
and the Middle East respectively [11]. The BlackEnergy
attack has been studied in detail and found to have caused
about 225,000 customers to lose power [12]. Addressing such
high-impact and unpredictable contingencies through methods
traditionally used in reliability-oriented planning faces two
major limitations. Firstly, the rarity of such events introduces
problems with stochastic modeling due to the possibility of
incorrectly estimating risk exposure, a phenomenon known as
ludic fallacy [13]. Unlike lower-order contingencies, forecast
errors can be unacceptably large since, for a given accuracy,
the magnitude of error will be higher for high-impact events.
Secondly, even if forecast errors are accounted for through
redundant capacity (by adding more lines and/or generators),



there is the issue of large investment in resources that will be
under-utilized most of the time, since severe disruptions are
rare.

Resilience was defined in the Presidential Policy Directive
21 as the ability of a system to adapt to varying conditions,
withstand disruptive events, and recover from them [14].
It is a concept distinct from reliability and indicates the
ability of a system to mitigate the impact of low-frequency
high-impact events, which cannot be captured by traditional
reliability metrics such as SAIDI and SAIFI that often do not
include large unexpected outages [15], [16]. A resilient system
must maintain high levels of performance by anticipating,
recovering from, and adapting to such disruptive events despite
potentially unprecedented contingencies and severe, rapidly
changing conditions [17]. In the context of power systems, this
refers to the ability to minimize unserved electrical load during
contingencies. Current practices with regard to distribution
restoration leave the grid vulnerable to extreme weather events
and are therefore not considered sufficiently resilient [18].
Probabilistic fragility modeling by Panteli et al. has shown that
resilience-enhancing adaptation measures such as redundancy
are necessary to ensure power system operation during extreme
weather, particularly when key parameters such as wind speed
are uncertain [19]. A study of the hazardous effects of wind
storms in the Northeast U.S. using Sequential Monte Carlo
simulations indicated the vulnerability of the grid to outage
and the need for system hardening against wind storms [20].
Risk assessment modeling in [21] based on the application
of data-mining techniques on historical outage data concluded
that the U.S. electricity grid is especially vulnerable to severe
wind events such as hurricanes and tornadoes that can affect
overhead transmission and distribution systems. Although sim-
ilar probabilistic methods have been used to ensure reliable
power system operation [22] and planning [23], it is unclear
how effective they are against rare extreme events, which are
difficult to model stochastically due to their rarity. Therefore,
additional resilience-oriented alternatives have been explored
in the literature.

Researchers have proposed various methods of enhancing
the resilience of power systems through planning, operational,
and restorative measures [24]–[30]. One approach is to divide
the grid into a number of smaller grids (islands) according
to some grouping criteria to minimize load shedding and
facilitate load restoration [24], [25]. A hierarchical outage
management scheme has been used to design a resilient
power distribution system encompassing multiple microgrids
with distributed control [26]. Another method of quantifying
resilience of a multi-microgrid system based on percolation
theory was proposed in [27] and used to decide the priority
of loads during service restoration. The feeder restoration
approach presented in [28] uses distributed energy resources
(DERs) to supply the critical loads in a power distribution
system when the main grid supply is unavailable. Fang
and Sansavini formulated resilience-oriented investment in
transmission line expansion and switching devices as a tri-
level optimization problem [29]. Optimal hardening of power

distribution networks based on severity of weather events and
vulnerability of lines is formulated as an optimization problem
in [30]. Cost minimization, the common objective in these
studies, is used to select optimal hardening strategies. It is
trivial to show that higher resilience generally incurs higher
costs. However, cost-effectiveness is useful for determining
the return on investment for hardening strategies. Although
optimal solutions are desirable, optimization-based formula-
tions such as those presented in [29], [30] do not provide
a simple, scalable computational framework for planners to
evaluate the cost-effectiveness of strategies. Moreover, formu-
lations such as [30] that consider worst-case scenarios may
result in higher costs with little incremental benefits. On the
practical side, running complex formulations such as tri-level
optimization programs [29], [30] for large scenario sets is
computationally expensive. In this paper, we propose an alter-
native methodology to analyze investment decisions based on
cost-effectiveness, that ranks decisions (instead of providing an
optimal one) and considers multiple contingencies of varying
severity.

Recent research has focused on exploiting the potential of
locally available generation by using DERs to improve the
resilience of the electric grid, especially on the distribution
side, which has been shown by past experience as the most
vulnerable part of the infrastructure [31]. The authors of [31]
mention solar photovoltaic (PV) devices as one the potential
DERs. Several methods of optimally sizing PV systems have
been proposed [32]–[36]. Additionally, PV arrays are coupled
with energy storage such as battery energy storage system
(BESS) to resolve the problem of intermittent power output
[37] and control power injection rate for system stability
[38], so that energy can be stored for use later instead of
being curtailed as is the case of smart inverter active power
injection control [39]. Their optimal sizing is generally treated
as an optimization problem with a trade-off between cost
and system reliability. Multi-objective approaches can include
environmental considerations such as reduction of emissions
(greenhouse gases and air pollutants) and fuel savings [34],
[36]. Planning of renewable sources in power distribution
networks brings additional challenges that requires meeting
objectives regarding power quality, voltage stability, and prof-
itability [40]–[42]. Such complex multi-objective optimiza-
tion planning problems are made computationally tractable
by metaheuristic algorithms, while analytical techniques are
employed for modeling and validation [40].

The distributed nature of PVs can be useful in mitigating
aggregation of large generation capacities at a limited number
of nodes, which can be detrimental to resilience since many of
the outages reported in [4] result from damaged transmission
lines. A long-term planning study found that renewable power
generators distributed throughout the system, in combination
with small thermal units, can reduce dependence on bulk
generation and transmission while maintaining reliability [43].
Also, previous works have modeled multiple outage scenar-
ios using probabilistic methods. For example, Monte Carlo
simulation is applied to model random outages in [23]. As



Fig. 1. Overview of the decision support framework.

discussed previously, this approach is unsuitable for resilience-
oriented planning where the impact of outages is large and
probability of occurrence is unknown.

This paper aims to enhance the resilience of a power grid
by exploiting the distributed nature of PV systems, with BESS
units added to resolve the intermittency issue. Redundancy-
based adaptation measures such as this poses the problem
of potentially allocating large amounts of resources for small
gains, due to the uncertainty of extreme events, the impact of
which cannot be modeled from historical data with sufficient
accuracy, unlike load fluctuations and minor disruptions. The
planner is faced with uncertainties regarding the amount of
resources to allocate. Since adding more PV and BESS units
would increase the resilience but would also cost more, cost-
effectiveness analysis (CEA) is used to measure the perfor-
mance (measured by the reduction in unserved load) per dollar
spent. This paper enhances the systematic approach developed
in [44], illustrated in Fig. 1, of ranking multiple allocation
plans, evaluating alternatives and observing trends in cost-
effectiveness for different levels of investment.

The proposed framework in Fig. 1 is organized into the
following sections. Section II describes the methodology of
contingency analysis, ranking allocation plans and the decision
support tool. Section III explains the planning model, where
PV and BESS resources are optimally allocated for each
scenario. Case study of a radial power distribution system
using the proposed framework is presented in Section IV.
Section V concludes the paper.

II. MULTI-CONTINGENCY PLANNING

The ability of a power system to supply loads can be
impaired in a variety of ways by extreme events. For example,
power line outages, which prevent power flow through a
subset of lines, can cause such disruptions. This can happen
because of direct physical damage to the line or tripped
circuit breakers due to overloading. Regardless of the reason,
it often ultimately causes a supply shortfall that results in some
unserved load. In this study, the amount of unserved load is
used as the measure of system performance. Hence, resilience
enhancement is defined as the reduction in total unserved load.

A. Contingency Analysis

The minimum unserved load under a given scenario may be
determined by solving the cost-minimizing optimal power flow
(OPF) problem, with a corresponding cost determined by the
value of lost load (VoLL). Security-constrained OPF (SCOPF)
can be used to deal with known contingencies by planning
optimal corrective actions after a disruptive event [45]. How-
ever, the SCOPF formulation suffers from scaling problems.
The order of contingency k, which in this study is the number
of disabled branches in the distribution system, determines
the number of scenarios. For a system with n branches, the
number of possible contingencies with k lines disabled is

(
n
k

)
. The IEEE 33-bus test system has 32 branches (excluding
the normally-open tie lines) and for k = 1, 2, 3 and 4 the
number of scenarios is 32, 496, 4960 and 35960 respectively.
Computational tractability decreases with the rapidly growing
set of all possible scenarios. Robust programming approaches
circumvent this problem by only selecting the worst contingen-
cies using, for instance, a bi-level max-min formulation [46].
But this method has the disadvantage of increasing the cost by
considering the worst possible scenario. This paper simulates
the operating condition of the power system using conic
programming, which offers a convenient way to solve OPF
for radial AC systems using convex optimization [47]. The
full non-convex optimization problem is reduced to a second-
order cone programming (SOCP) problem by relaxing some
equality constraints into inequality constraints and eliminating
sinusoidal ones not required for radial load flow. The AC OPF
is run for various contingencies and the unserved load results
for each scenario are used in the decision process.

B. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a numerical
framework for complex multiple criteria decision making
[48], allowing possible alternatives to be ranked based on
numerically defined priorities instead of providing a single
optimal solution. If the number of criteria considered in a
decision process is m, then a m × m pairwise comparison
matrix of criterion weights A can be defined so that the
element ajk expresses the importance of the j-th criterion
relative to the k-th criterion. With n alternative options being



considered, a n × n pairwise comparison matrix B(i) can be
constructed such that the element b(i)jk indicates how preferable
the j-th option is to the k-th option, with respect to the i-th
criterion.

wj =

∑m
k=1

ajk∑m
l=1 alk

m
(1)

s
(j)
i =

∑n
k=1

b
(j)
ik∑n

l=1 b
(j)
lk

n
(2)

The pairwise comparison matrices are used to calculate the
m-dimension criteria weight vector w and the n-dimensional
option score vector s(j) by normalization with the column sum
and taking the row average, as shown in (1)–(2). The full
n×m option score matrix is S = [s(1)s(2)...s(m)]. As the final
output, the AHP method assigns each option an overall score.
The global score vector v gives the score for each option and
is calculated as shown below.

v = Sw (3)

All n options can be arranged from most desirable to least
desirable by arranging them in descending order of scores.
In this study, AHP has been used to solve the problem
selecting the best allocation plan (size and location of PV
and BESS units) for multiple scenarios, by considering the
contingencies as criteria and the plans as options. Criteria
weights are assigned based on the severity of the contin-
gencies, as indicated by the unserved load. Option scores
are decided based on the performance of the plans in each
scenario, evaluated on the basis of the power supplied and
the annual cost. Cost-effectiveness of one option relative to
another is calculated using the CEA metric of incremental cost
effectiveness ratio (ICER). Since a lower ICER means higher
preferability, the utility score is defined as the inverse of ICER.
After criteria weight and option score matrices are found, the
final calculation of the global score vector has time complexity
O(mn) for m contingencies and n options. Working memory
requirements are also modest since the total number of matrix
elements that need to be stored is m2+mn+n. Therefore, the
proposed AHP-based method can scale easily for much larger
distribution systems than the test case.

ui(j, k) =
E
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(i)
k
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(4)
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j
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(i)
j =
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E
(i)
j − E

(i)
o
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In (4), the utility of the j-th plan compared to the k-th plan
for the i-th contingency is denoted by ui(j, k). E(i)

j and E(i)
k

are the effects of the j-th and k-th plans, respectively, when
they are applied to the i-th contingency, defined as the amount
of load supplied. Cj and Ck are the annualized investment

cost plus the annual operating cost of the j-th and k-th plans
respectively. According to (4), a plan has higher utility if it
supplies more power and has a lower annual cost, since a plan
that can supply more power per additional dollar is considered
to be more cost-effective. The total utility of the k-th plan
Uk is calculated by summing over all the comparisons and
contingencies as shown in (5). The average cost-effectiveness
ratio for the j-th plan in the i-th contingency CE

(i)
j is

calculated as shown in (6), where E
(i)
o is the active power

supplied in that scenario without any additional generators.
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Contingencies are compared on the basis of severity, which
is represented by the amount of unserved load. PUS

j and PUS
k

are the total unserved load in the k-th and j-th contingencies,
respectively. Therefore, criteria are assigned importance by
(7)–(8), where maxPUS and minPUS are the maximum and
minimum unserved load across all contingencies, respectively.
Similarly, option scores are calculated in (9)–(10), with u(i)max

and u(i)max denoting the maximum and minimum utility among
all plans for contingency i, respectively, and ui(j, i) is the
utility of plan j relative to no allocation plan in contingency
i. Results of the contingency simulation are used as the basis
for the planning model and decision support system, as shown
in Fig. 1. It should be noted that the decision-maker is free to
choose alternatives to the CEA-based utility formula presented
here, as long as some minimal requirements are satisfied. An
alternative method of calculating ui(j, k) should meet the
basic requirement of quantifying preferability by assigning
higher scores to better options and maintaining consistency.
If option k1 is better than k2, then ui(k1, k2) > ui(k2, k1).
If both k1 and k2 are better than a third option k3, then
additionally ui(k1, k3) > ui(k3, k1), ui(k2, k3) > ui(k3, k2),
and ui(k1, k3) > ui(k2, k3).

III. ALLOCATION AND SIZING OF PV AND BESS

Power line outages reduce the number of available paths
for power flow and may cause a shortfall in supply. Also,
a disabled power line divides the grid into islands, which
are groups of nodes with an existing path between each pair
of nodes. Appropriately sized solar PV arrays, along with a
BESS as a backup source and storage for excess energy, can
supply the shortfall. In each island, the node with the highest
unserved load across all the contingencies is selected for siting



TABLE I
PV PANEL PARAMETERS

PV panel BP-Solar 3200
Rated power 200 W
Open-circuit voltage 30.8 V
Short-circuit current 8.7 A
Optimum voltage 24.5 V
Optimum current 8.16 A
Efficiency at STC 13%
Dimensions (L/W/D) 1680 × 837 × 50 mm
Cost per panel $420
O&M cost $15/kW

these resources. Based on the results of AC OPF simulation
described in Section II, the planning model allocates PV and
BESS resources to each island to ensure that the demand is
met at minimum cost.

ψ = 1− Pd∑
i P

US(i)
(1− c) (11)

The fraction of the total load that is to be covered by
the planning model is given by c. By default, it is assumed
c = 1, although cases of c < 1 are also examined later in the
case study. Sizing of the PV and BESS resources is based
on the parameter ψ, which is calculated from c using the
expression in (11), where Pd is the total load in the distribution
system and PUS(i) is the total load in island i for a particular
contingency.

A. Photovoltaic Resources

A PV array equipped with a dc-ac inverter and a maximum
power point tracking (MPPT) controller has a power output
the depends on the solar irradiance and temperature. The PV
array installed for island i is rated at P (i)

pv r with a derating
factor of f (i)pv to account for various factors such as shading
and wiring losses. The actual power output of the array P (i)

pv

depends on the on the solar insolation G and the temperature
T . The solar radiation and temperature under standard test
conditions are given by GSTC and TSTC respectively, while
αT is the temperature coefficient.

f(G; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

(
G

Gmax

)a−1(
1− G

Gmax

)b−1

(12)

P (i)
pv = f (i)pv P

(i)
pv r

G

GSTC
[1 + αT (T − TSTC)] (13)

P (i)
pv ≥

ψ

ηpv inv
PUS(i) (14)

The expression in (13) gives the instantaneous PV power
output for a given solar radiation and temperature. Since solar
irradiance changes with time, the output power also varies, so
a stochastic model is needed to account for the time-varying
nature and suggest an appropriate value for G. As in many
previous studies, the insolation is assumed to follow a beta
probability distribution function [49] given by (12), where a

TABLE II
LEAD-ACID BATTERY PARAMETERS

Battery Hoppecke 6OPzS 600
Rated capacity 600 Ah
Rated voltage 2 V
Minimum SOC 35%
Round-tip efficiency 85%
Max. charge/discharge rate 0.5 A/Ah, 0.5 A/Ah
Max. charge/discharge current 100 A/75 A
Self-discharge rate 1%
Dimensions (L/W/D) 215 × 193 × 710 mm
Cost per cell $150
O&M cost $20/kAh

Fig. 2. Relationship between normalized (a) total unserved load, (b) cost,
and (c) utility score.

and b are the shape parameters of the beta distribution and Γ
is the gamma function. Therefore, the allocated PV resources
would have to be oversized in order to supply the demand. The
PV rating P (i)

pv r = n
(i)
pvPpv unit for island i is made up of n(i)pv

discrete units, each with rated power Ppv unit . The minimum
PV power output for each island i with unserved load PUS(i)
is given by (14), where ηpv inv is the inverter efficiency. The
full list of PV panel parameters is provided in Table I. Actual
historical solar irradiance data has been used later in Section
IV-B to account for solar and diurnal variations in insolation
while evaluating the proposed scheme.

Fig. 3. The 33-bus distribution system with top 10 plans implemented for
100% coverage, showing rated solar array power and battery capacity along
with options.



B. Lead-Acid Battery

Lead-acid batteries are combined with PV arrays for match-
ing supply with demand. The battery can be charged during
periods of surplus production and discharged when there is a
deficit, so that the loads are always supplied. Grid-connected
BESS can also be charged using grid supply. Allocation of
batteries to each island is described by the following equations.

Q
(i)
bs ≥

tcψ

ηbs invηctrlVtMDOD
PUS(i) (15)

Although commercial BESS are rated in electrical energy
units (kWh or MWh), the ampere-hour capacity is more rele-
vant to battery cells since the actual energy charge/discharge
depends on the charging/discharging current. The ampere hour
rating depends on the terminal voltage Vt. The maximum
depth of discharge (MDOD), inverter efficiency ηbs inv and
charge controller efficiency ηctrl are considered in the model
described by (15). Since PV arrays provide no power during
the night, a robust sizing strategy is used to decide the BESS
capacity so that it can take on the entire unserved load by itself
for a fixed duration of tc hours, expected to be the maximum
time required for service restoration. The BESS ampere-hour
capacity Q(i)

bs = n
(i)
bsQbs unit installed in island i is made up of

n
(i)
bs battery cells, each with rated capacity of Qbs unit. Table

II gives the details of the lead-acid battery cells used.

C. Annual Cost

The purpose of the planning model is the optimal sizing and
allocation of the resources to enhance resilience and minimize
total cost. This is formulated as an optimization problem with
the total annual cost as the objective function and the various
requirements, given by (13)–(15), enforced as constraints.

min
n
(i)
pv ,n

(i)
bs

fcr

(
Cpv

∑
i

n(i)pv + Cbs

∑
i

n
(i)
bs

)
+ Cpv OM

∑
i

P (i)
pv r + Cbs OM

∑
i

Q
(i)
bs (16)

Total annualized cost is represented as expression in (16).
The initial investment cost is found by multiplying the number
of installed units by the cost per unit. Cpv and Cbs are the
costs of each PV and BESS unit respectively, as specified in
Tables I and II. The cost is annualized by multiplying it with
the capital recovery factor fcr = r(1 + r)L/{(1 + r)L − 1},
where r is the interest rate and L is the project lifetime. The
annual operating and maintenance cost is calculated using the
per unit capacity costs of PV and BESS, which are Cpv OM

and Cbs OM respectively. Since resilience enhancement is the
primary goal and normal operation is not a priority, fuel
savings and tax credits are not included in the cost calculations,
unlike in [36]. However, realistically a system planner would
intend to use the PV generation and cheap electricity used to
charge the BESS during off-peak hours to get added return
on investment. These considerations would reduce the total
annualized cost and provided a further incentive for generation

Fig. 4. Unserved load at different contingency occurrence time throughout
the year, assuming battery backup is not available, based on hourly solar
irradiance data.

expansion. It should be noted that due to the scope of this
study, the test case does not include alternative grid hardening
or redundancy-based measures, although these can also be
incorporated into the proposed model as long as their costs
and effects can be quantified.

Fig. 5. Cost for the top 10 plans for (a) 100% (b) 99% (c) 95% and (d) 80%
coverage.

IV. CASE STUDY

Radial power distribution systems are particularly vulnera-
ble to line outages, since disruption of a single line may cut off
multiple buses from power. The proposed planning method is
tested on the standard IEEE 33-bus system, a 12.66 kV radial

Fig. 6. Total cost-effectiveness for (a) 100% (b) 99% (c) 95% and (d) 80%
coverage.



distribution system with total active and reactive power of 3.71
MW and 2.3 MVAR respectively [50]. Numerical solutions
are obtained using CPLEX 12.8.0.0 optimization solver in
MATLAB. All first- and second-order contingencies (one and
two lines disabled, respectively) are simulated using the AC
OPF model to yield the amount of unserved load at each node,
considering all loads as dispatchable. The SOCP model is run
for 528 contingencies. In the planning model, mixed-integer
linear programming (MILP) is used to solve the optimization
problem of minimizing total annual cost of additional PV and
BESS systems for each contingency scenario. The numerical
solution to the MILP problem gives the optimal plans for all
scenarios, which are used as options in the AHP decision-
making stage. Detailed parameters of PV panels and battery
cells used in this study were obtained from [35].

A. Evaluation of Recommended Plans

The cost-effectiveness of each option for all scenarios is
evaluated using (6). Plans are generally the least cost-effective
for severe contingency scenarios (such as outage of the line
between bus 1 and bus 2), where most of the buses are
disconnected from the grid. These are the scenarios with the
highest load shedding and require the most expensive plans.
Comparison of the options on the basis of unserved load,
cost, and utility (normalized with respect to the maximum),
demonstrated in Fig. 2, show that costlier plans supply more
power but generally tend to be less cost-effective. This trend
of diminishing returns means that the planner must consider
the trade-off between performance and cost-effectiveness using
the decision support system described in Section II. Since the
utility score is based on the pairwise comparison of plans,
Fig. 2 indicates that cheaper plans are generally preferable to
expensive ones. All options are ranked according to their AHP
global scores based on the utility function in (4). The options
are not mutually exclusive and often overlapping. For example,
if Plan A requires a 728-cell array and Plan B requires a 1213-
cell array at the same bus, then implementing Plan B makes
Plan A redundant since it is effectively included in Plan B. The
planner may choose to combine multiple options while staying
within budget. Fig. 3 shows the result of implementing the
first 10 plans recommended by AHP. The PV and BESS units
are added preferentially to terminal buses, which are more
vulnerable to load shedding due to being further away from
the feeder.

B. Seasonal and Diurnal Variation

Diurnal and seasonal variations in solar irradiance results
in variable power output from the PV arrays and means that
the actual reduction in unserved load depends on the time of
occurrence of the contingency. It is assumed that when the
contingency occurs, the battery is at full capacity, charged by
electricity from both the grid and PV arrays. Fig. 4 shows the
amount of unserved load caused by the worst-case scenario,
where the entire distribution network is disconnected from the
source feeder, as the season and time of day of occurrence
varies throughout the year. Hourly time-series data from the

TABLE III
PV CAPACITY (KW) BY LOCATION AND COVERAGE LEVEL

Cov
(%)

Bus
8

Bus
14

Bus
17

Bus
18

Bus
21

Bus
22

Bus
25

Bus
32

Bus
33

100 0 0 97 242.6 145.6 291 0 0 97

80 0 78.4 0 8.6 0 27.6 0 71.4 0

60 10.6 74.6 0 0 0 0 80.8 101.8 0

40 6 3 0 1.2 0 0.8 0 9.8 0

20 0 78 0 38 0 0 91.8 444.8 0

TABLE IV
BESS CAPACITY (KAH) BY LOCATION AND COVERAGE LEVEL

Cov
(%)

Bus
8

Bus
14

Bus
17

Bus
18

Bus
21

Bus
22

Bus
25

Bus
32

Bus
33

100 0 0 1.2 1.8 1.2 1.2 0 0 1.2

80 0 0.6 0 0.6 0 0.6 0 0.6 0

60 0.6 0.6 0 0 0 0 0.6 0.6 0

40 0.6 0.6 0 0.6 0 0.6 0 0.6 0

20 0 0.6 0 0.6 0 0 1.2 3.6 0

National Solar Radiation Database is used to estimate the vari-
able power output of the PV arrays. Resilience enhancement
is most effective during daytime around the middle of the
year, when insolation is the highest. For this figure, Diffuse
Horizontal Irradiance (DHI) data has been used to calculate
the PV power output, assuming that the panels are fixed.
The results can be significantly improved with the installation
of sun-tracking systems for the panels, since Direct Normal
Irradiance (DNI) is considerably higher than DHI.

C. Coverage Level

The results shown in Figs. 2-3 have assumed that the planner
intends to cover all of the unserved load with additional gener-
ation. The effect of reducing the total load coverage c, which
may be necessary due to priorities and budget constraints,
is also investigated in this case study. For some contingency
scenarios where the unserved load is too low, the annualized
cost of the optimal plan becomes zero and these scenarios are
ignored in the AHP stage. Fig. 5 compares the cost of the top
10 plans for different levels of coverage. Fig. 6 does the same
thing for total cost-effectiveness, defined as the sum of CE(i)

j

for all contingencies i. The results show a significant reduction
in total cost and cost per unit power as the coverage level is
reduced from 100% to 80%. This fits the general trend of
more expensive plans being more costly per kW. The average
cost per kW of additional power capacity, calculated over all
the plans and scenarios, is plotted for a broader range of
coverage levels in Fig. 7. It shows that each unit of resilience
enhancement becomes more expensive as larger proportions of
loads are planned for. Assumed insolation is also a factor, since
higher solar irradiance causes fewer panels to be installed for
the same coverage level, resulting in lower investment cost and
higher cost-effectiveness. Fig. 7 shows the cost-effectiveness
for three insolation levels: the reference case, high insolation
(+50%), and low insolation (–50%). Varying the coverage level



Coverage level (%)

$
/k

W

High insolation

Low insolation

Reference

Fig. 7. Average cost-effectiveness for different levels of coverage and different
amounts of insolation.

affects the location and capacity of resources added when the
top 10 plans are implemented, as shown in Tables III and IV.
Similar to Fig. 3, terminal bus locations tend to be favored.
A reduction in target coverage does not necessarily reduce
the installed capacity. As the coverage level is reduced, low-
impact contingencies are increasingly removed from the pool
and high-impact contingencies tend to be prioritized.

D. Planning Policy

Implementing the proposed framework requires the planner
to make policy decisions. Fig. 1 shows that coverage level is a
required input for the proposed method. Although 100% of the
loads would be covered in an ideal situation, the planner may
decide to lower the coverage level to below 100% to reduce
costs. Therefore, coverage level is a matter of policy that must
be set by the planner. Selecting plans would depend on the
outcome of detailed cost-benefit analyses. One approach could
be to use VoLL and expected energy not supplied (EENS) to
determine if a particular set of plans is worth the investment.
If Ca is the total annualized investment cost as given by (16)
and the planner expects the distribution network to face a set
of contingencies I over a year, then the following condition
must be satisfied:

Ca <
∑
i∈I

(EENS
(i)
0 − EENS(i)) ∗ V oLL (17)

where EENS(i) and EENS(i)
0 are the EENS values with and

without the additional generation. The inequality essentially
states that the reduction in annual monetary loss due to the
extreme events must be greater than the annualized cost of
the added resources. Final outcomes will depend on the VoLL
used to find the monetary equivalent of lost load, as shown
in Fig. 1. Calculation of per unit VoLL would be specific to
the decision-maker’s goals and is not considered in this study.
Other benefits such as electricity bill savings and tax incentives
can also be factored in to offset Ca. After ranking the plans
in descending order of global scores, they are added to the
distribution system one by one until the condition in (17) is
violated. The largest set of plans obtained before the violation
is then implemented.

V. CONCLUSION

This paper presents a flexible and generalizable decision-
making framework that constitutes a systematic and quan-
titative approach to how additional investment can increase
resilience and multiple alternative solutions can be ranked
meaningfully. The proposed framework is intended to aid
planners in decisions about the amount of resource alloca-
tion, on top of other hardening and redundancy-based mea-
sures that the planner intends to apply to the infrastructure.
Contingency analysis by AC OPF is used as input for the
planning stage, where PV and BESS resources are optimally
allocated to supply loads. Since multiple contingencies are
being considered and several plans are possible, AHP is used
to choose between the available alternatives, ranked according
to their cost-effectiveness across multiple scenarios. Lowering
the coverage level is generally more cost-effective but may
result in selection of expensive plans because the analysis
is confined to high-impact contingencies that require large
installed capacity. Therefore, planning policy suggestions are
provided to help decision-makers evaluate the feasibility of
solutions. The proposed method offers significant flexibility
and transparency for decision-makers, as it allows insight into
the range of options and how the cost-effectiveness scales
with different decisions. Utility measures may be expanded
beyond cost and resilience enhancement, as per the priorities of
decision-makers. The utility function may be replaced by a dif-
ferent formula or an implicit system such as an expert system
or learning algorithm. The set of scenarios may be expanded
to include higher-order contingencies. Quantitative analysis
reveals patterns can help planners compromise between cost
and resilience, perhaps through a secondary decision support
system. Since AHP only uses linear transformations and matrix
operations, it may be scaled up to include more contingencies
and allocation plans without requiring significantly greater
computational power. The list of options in the case study
of Section IV has been limited to the optimal plans for all
scenarios, but the planning model may be expanded to generate
any number of options, including other redundancy-based or
grid hardening measures. However, simulation of numerous
contingencies and allocation plans in large systems can be
highly taxing. It may be necessary to limit the set of scenarios
and plans to ensure computational tractability of numerical
analyses preceding the AHP stage.
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