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Abstract—Resilience of electricity grids to rare but severely
disruptive events, such as natural disasters, has emerged in recent
years as the most important aspect in power system planning.
This paper presents a novel approach to enhance the resilience of
a system by leveraging the distributed nature of solar photovoltaic
(PV) and battery energy storage system (BESS) resources. The
proposed decision-making framework uses analytic hierarchy
process (AHP) to evaluate different possible allocations of PV
and BESS resources for multiple contingencies based on resilience
enhancement and cost. A deterministic formulation ranks outage
scenarios based on the impact on performance. The trade-off
between cost and resilience is modeled via cost-effectiveness
analysis (CEA) that indicates the preferability of each allocation
plan. The main contribution of this paper is the development
of an adaptable and computationally feasible decision support
framework to determine cost-effective configurations of PV
arrays and BESSs for mitigating the effects of transmission line
outage contingencies. To evaluate the proposed framework, a
case study is carried out on the IEEE 33-bus radial distribution
system. The results show that the proposed method can offer
effective guidance to the planner for making informed decisions
about spending resources and achieving cost-effective resilience
enhancement.

Index Terms—Decision support systems, distributed genera-
tion, power system planning, resilience, renewable energy

I. INTRODUCTION

Traditional electric power systems are designed to operate
during certain contingencies based on the reliability criteria
of security and adequacy. These contingencies result from
the breakdown of system components and have predictable
impacts with known failure rates. However, catastrophic events
such as natural disasters, which occur rarely but have a
large and unpredictable impact, present a challenge to this
reliability-based planning of power systems. Weather-related
events can cause massive disruption of the grid in the form
of infrastructure damage and service interruption. Hurricane
Harvey was estimated to have caused $125 billion in total
damages and power outage to about 220,000 customers [1].
In the period 2003-2012, over 50,000 U.S. customers were
impacted by 679 power outages due to weather-related events
[2]. Such high-impact and unpredictable contingencies require

a resilience-oriented approach, since they cannot be addressed
through the stochastic methods traditionally used in reliability-
oriented planning.

Resilience is a concept distinct from reliability and indicates
the ability of a system to deal with low-frequency high-impact
events, which cannot be captured by reliability metrics [3].
Current practices with regard to distribution restoration leave
the grid vulnerable to extreme weather events and are therefore
not considered sufficiently resilient [4]. Probabilistic fragility
modeling by Panteli et al. has shown that adaptation measures
are necessary to ensure power system operation during extreme
weather, particularly when key parameters such as wind speed
are uncertain [5]. A study of the hazardous effects of wind
storms in the Northeast U.S. using Sequential Monte Carlo
simulations indicated the vulnerability of the grid to outage
and the need for system hardening against wind storms [6].
Although similar probabilistic methods have been used to
ensure reliable power system operation [7] and planning [8],
they cannot guarantee mitigation against rare extreme events.
Therefore, additional resilience-oriented alternatives have been
explored in the literature.

Researchers have proposed various methods of enhancing
the resilience of power systems [9]–[14]. One approach is
to divide the grid into a number of smaller grids (islands)
according to some grouping criteria to minimize load shedding
and facilitate load restoration [9], [10]. A hierarchical outage
management scheme has been used to design a resilient
power distribution system encompassing multiple microgrids
with distributed control [11]. The feeder restoration approach
presented in [12] uses distributed energy resources (DERs)
to supply the critical loads in a power distribution system
when the main grid supply is unavailable. Replacing sections
of a power system with underground natural gas transportation
systems has been shown to improve the grid resilience [13].
In [14], a shipboard power system was made more resilient
using a strategy of adding power lines based on graph theory.

Recent research has focused on exploiting the potential of
locally available generation by using DERs to improve the



Fig. 1. Overview of the decision support framework.

resilience of the electric grid, especially on the distribution
side, which has been shown by past experience as the most
vulnerable part of the infrastructure [15]. The authors of [15]
mention solar photovoltaic (PV) devices as one the potential
DERs. Several methods of optimally sizing PV systems have
been proposed [16]–[20]. Additionally, PV arrays are coupled
with energy storage such as battery energy storage system
(BESS) to resolve the problem of intermittent power output
[21] and control power injection rate for system stability [22].
Their optimal sizing is generally treated as an optimization
problem with a trade-off between cost and system reliability.
Multi-objective approaches can include environmental consid-
erations such as reduction of emissions (greenhouse gases and
air pollutants) and fuel savings, either directly by maximizing
the use of zero-emission sources [20] or indirectly (in grid-
connected scenarios) by minimizing power purchases from the
utility grid [18].

Literature concerning the planning of power systems based
on PV and other renewable sources has generally focused on
minimizing cost and ensuring reliability. Resilience has not
been considered as an issue of interest. However, many of the
outages reported in [1], [2] result from damaged transmission
lines, which are crucial for the operation of conventional
power systems with large generation capacities aggregated
at a limited number of nodes. Renewable power generators
tend to be distributed throughout the system and require fewer
transmission lines [23], thus reducing the number of potential
points of failure. Also, previous works have modeled multiple
outage scenarios using probalistic methods. For example,
Monte Carlo simulation is applied to model random outages
in [8]. As discussed previously, this approach is unsuitable
for resilience-oriented planning where the impact of outages
is large and probability of occurrence is unknown. This paper
aims to enhance the resilience of a power grid by exploiting
the distributed nature of PV systems, which have greater
sizing and siting flexibility than fossil fuel plants, along
with BESSs to resolve the intermittency issue. Since adding
more units would increase the resilience but would also cost

more, cost-effectiveness analysis (CEA) is used to measure the
performance per dollar spent. The major contribution of this
paper is a flexible and scalable decision support system for
PV system sizing and siting, shown in Fig. 1, that leverages
its distributed nature to achieve higher resilience in a power
distribution system. A deterministic formulation based on the
severity of contingencies is used to model multiple outage
scenarios simultaneously in the decision process.

The proposed framework in Fig. 1 is organized into the
following sections. Section II describes the methodology of
contingency analysis, ranking allocation plans and the decision
support tool. Section III explains the planning model, where
PV and BESS resources are optimally allocated for each
scenario. Case study of a radial power distribution system
using the proposed framework is presented in Section IV.
Section V concludes the paper.

II. MULTI-CONTINGENCY PLANNING

The ability of a power system to supply loads is impaired
by a transmission line outage, which prevents power flow
through a subset of lines. This can happen because of direct
physical damage to the line or tripped circuit breakers due
to overloading. Regardless of the reason, it often ultimately
causes a supply shortfall that results in some unserved load. In
this study, the amount of unserved load is used as the measure
of system performance.

A. Contingency Analysis

At any time, the state of a power system can be de-
termined by running a power flow model. If the loads are
considered dispatchable, this can also show the unserved load.
The minimum unserved load under any condition may be
determined by solving the cost-minimizing optimal power flow
(OPF) problem, with a large cost incurred for any loads shed.
Security-constrained OPF (SCOPF) can be used to deal with
known contingencies by planning optimal corrective actions
after a disruptive event [24]. However, the SCOPF formulation
becomes increasingly complex as the pre-specified set of



contingencies grows larger. The order of contingency k, which
in this study is the number of disabled transmission lines,
determines the number of scenarios. For a system with n
branches, the number of possible contingencies with k lines
disabled is

(
n
k

)
. The IEEE 33-bus test system has 32 branches

(excluding the normally-open tie lines) and for k = 1, 2, 3
and 4 the number of scenarios is 32, 496, 4960 and 35960
respectively. Since the set of scenarios grows rapidly with
the order of the contingency, it may not be computationally
feasible to consider all the possible scenarios. Robust program-
ming approaches circumvent this problem by only selecting
the worst contingencies using, for instance, a bi-level max-
min formulation [25]. But this method has the disadvantage of
increasing the cost by considering the worst possible scenario.
This paper simulates the operating condition of the power sys-
tem using conic programming, which offers a convenient way
to solve OPF for radial AC systems using convex optimization
[26]. The full non-convex optimization problem is reduced to a
second-order cone programming (SOCP) problem by relaxing
some constraints and eliminating other sinusoidal ones. The
AC OPF is run for various contingencies and the results are
used in the decision process.

B. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a numerical
framework for complex multiple criteria decision making [27].
It is a flexible decision support tool that can account for both
objective realities and subjective experience through pairwise
comparison of criteria and alternative options. Relative im-
portance of each criterion with respect to all other criteria is
expressed numerically, so that a higher number corresponds
to greater importance. Similarly, each option is also compared
against all other options under consideration and the relative
preference, with respect to each criterion, is expressed as a
number. If the number of criteria considered in a decision
process is m, then a m × m pairwise comparison matrix of
criterion weights A can be defined so that the element ajk
expresses the importance of the j-th criterion relative to the
k-th criterion. With n alternative options being considered, a
n × n pairwise comparison matrix B(i) can be constructed
such that the element b(i)jk indicates how preferable the j-th
option is to the k-th option, with respect to the i-th criterion.
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The pairwise comparison matrices are used to calculate the
m-dimension criteria weight vector w and the n-dimensional
option score vector sj by normalization with the column sum
and taking the row average, as shown in (1)–(2). The full
n×m option score matrix is S = [s(1)s(2)...s(m)]. As the final
output, the AHP method assigns each option an overall score.
The global score vector v gives the score for each option and
is calculated as shown below.

v = Sw (3)

The score of an option is a number that indicates its
preferability. All n options can be arranged from most de-
sirable to least desirable by arranging them in descending
order of scores. In planning generation expansion for multiple
contingencies, there is the issue of deciding the best plan for all
possible scenarios. In this study, AHP has been used to solve
this problem, by considering the contingencies as criteria and
the plans as options. Criteria weights are assigned based on
the severity of the contingencies, as indicated by the unserved
load. Option scores are decided based on the performance
of the plans in each scenario, evaluated on the basis of the
power supplied and the annual cost. Cost-effectiveness of one
option relative to another is calculated using the CEA metric
of incremental cost effectiveness ratio (ICER). Since a lower
ICER mean higher preferability, the utility score is defined as
the inverse of ICER.
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In (4), the utility of the j-th plan compared to the k-th
plan for the i-th contingency is denoted by ui(j, k). E(i)

j and
E

(i)
k are the effects of the j-th and k-th plans, respectively,

when they are applied to the i-th contingency, defined as
the amount of load supplied. Cj and Ck are the annualized
investment cost plus the annual operating cost of the j-th
and k-th plans respectively. According to (4), a plan has
higher utility if it supplies more power and has a lower
annual cost, since a plan that can supply more power per
additional dollar is considered to be more cost-effective. The
total utility of the k-th plan Uk is calculated by summing
over all the comparisons and contingencies as shown in (5).
The average cost-effectiveness ratio for the j-th plan in the
i-th contingency CE

(i)
j is calculated as shown in (6), where

E
(i)
o is the active power supplied in that scenario without any

additional generators. The utility function is used to build the
pairwise comparison matrices for the AHP algorithm using the
transformations shown below.
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Fig. 2. Proposed planning framework for resilience enhancement.
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Contingencies are compared on the basis of severity, which
is represented by the amount of unserved load. PUS

j and PUS
k

are the total unserved load in the k-th and j-th contingencies,
respectively. Therefore, criteria are assigned importance by
(7)–(8), where maxPUS and minPUS are the maximum and
minimum unserved load across all contingencies, respectively.
Similarly, option scores are calculated in (9)–(10), with u(i)max

and u(i)max denoting the maximum and minimum utility among
all plans for contingency i, respectively. A simple linear
transformation is used to derive the matrices in each case.
Results of the contingency simulation are used as the basis for
the planning model and decision support system, as shown in
Fig. 2.

III. ALLOCATION AND SIZING OF PV AND BESS
Transmission line outages reduce the number of available

paths for power flow and may cause a shortfall in supply.
Appropriately sized solar PV arrays, along with a BESS as a
backup source and storage for excess energy, can supply the
shortfall. The node with the highest unserved load across all
the contingencies is selected for these resources. A disabled
transmission line divides the grid into islands, which are
groups of nodes with an existing path between each pair of
nodes. Based on the results of AC OPF simulation described
in Section II, the planning model allocates PV and BESS
resources to each island to ensure that the demand is met at
minimum cost. Fig. 2 how the optimal plan for each scenario
is used to calculate cost-effectiveness and provide input to the
AHP algorithm.

A. Photovoltaic Resources
A PV array equipped with a dc-ac inverter and a maximum

power point tracking (MPPT) controller has a power output

TABLE I
PV PANEL PARAMETERS

PV panel BP-Solar 3200
Rated power 200 W
Open-circuit voltage 30.8 V
Short-circuit current 8.7 A
Optimum voltage 24.5 V
Optimum current 8.16 A
Efficiency at STC 13%
Dimensions (L/W/D) 1680 × 837 × 50 mm
Cost per panel $420
O&M cost $15/kW

TABLE II
LEAD-ACID BATTERY PARAMETERS

Battery Hoppecke 6OPzS 600
Rated capacity 600 Ah
Rated voltage 2 V
Minimum SOC 35%
Round-tip efficiency 85%
Max. charge/discharge rate 0.5 A/Ah, 0.5 A/Ah
Max. charge/discharge current 100 A/75 A
Self-discharge rate 1%
Dimensions (L/W/D) 215 × 193 × 710 mm
Cost per cell $150
O&M cost $20/kAh

the depends on the solar irradiance and temperature. The PV
array installed for island i is rated at P (i)

pv r with a derating
factor of f (i)pv to account for various factors such as shading
and wiring losses. The actual power output of the array P (i)

pv

depends on the on the solar insolation G and the temperature
T . The solar radiation and temperature under standard test
conditions are given by GSTC and TSTC respectively, while
αT is the temperature coefficient.

P (i)
pv = f (i)pv P

(i)
pv r

G

GSTC
[1 + αT (T − TSTC)] (11)

f(G; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

(
G

Gmax

)a−1(
1 − G

Gmax

)b−1

(12)

P (i)
pv r = n(i)pvPpv unit (13)

The expression in (11) gives the instantaneous PV power
output for a given solar radiation and temperature. Since solar
irradiance changes with time, the output power also varies, so
a stochastic model is needed to account for the time-varying
nature and suggest an appropriate value for G. As in many
previous studies, the insolation is assumed to follow a beta
probability distribution function [28] given by (12), where a
and b are the shape parameters of the beta distribution and γ
is the gamma function. Therefore, the allocated PV resources
would have to be oversized in order to supply the demand. In
(13), PV installation for island i is shown to be made up of
n
(i)
pv discrete units, each with rated power Ppv unit . The full

list of PV panel parameters is provided in Table I.



Fig. 3. Cost-effectiveness for all plans and scenarios.

Fig. 4. Relationship between normalized (a) total unserved load, (b) cost,
and (c) utility score.

B. Lead-Acid Battery

Since PV arrays alone cannot reliably supply power, some
form of energy storage is needed to match supply with
demand. Usually, lead-acid batteries are combined with PV
arrays for this purpose. The battery can be charged during
periods of surplus production and discharged when there is a
deficit, so that the loads are always supplied. Allocation of
batteries to each island is described by

Q
(i)
bs = n

(i)
bsQbs unit (14)

where Q(i)
bs is the ampere-hour capacity of the BESS installed

in island i, n(i)bs is the number of cells in the battery, and
Qbs unit is the rated ampere-hour capacity of each cell. The
ampere-hour charge is used here since for batteries it is more
convenient than energy or power. The BESS also includes
an inverter and charge controller. The maximum depth of
discharge and the efficiencies of the inverter and controller are
considered in the model. Since PV arrays provide no power
during the night, a robust sizing strategy is used to decide the
BESS capacity so that it can take on the entire unserved load
by itself. Table II gives the details of the lead-acid battery cells
used.

C. Annual Cost

The purpose of the planning model is the optimal sizing and
allocation of the resources to enhance resilience and minimize
total cost. This is formulated as an optimization problem with
the total annual cost as the objective function and the various
requirements enforced as constraints.

min
n
(i)
pv ,n

(i)
bs

fcr

(
Cpv

∑
i

n(i)pv + Cbs

∑
i

n
(i)
bs

)
+ Cpv OM

∑
i

P (i)
pv r + Cbs OM

∑
i

Q
(i)
bs (15)

fcr =
r(1 + r)L

(1 + r)L − 1
(16)

Total annualized cost is represented as expression in (15).
The initial investment cost is found by multiplying the number
of installed units by the cost per unit. Cpv and Cbs are the costs
of each PV and BESS unit respectively, as specified in Tables
I and II. The cost is annualized by multiplying it with the
capital recovery factor fcr, calculated as in (16), where r is the
interest rate and L is the project lifetime. The annual operating
and maintenance cost is calculated using the per unit capacity
costs of PV and BESS, which are Cpv OM and Cbs OM

respectively. Since resilience enhancement is the primary goal
and normal operation is not a priority, fuel savings and tax
credits are not included in the cost calculations, unlike in
[20]. However, realistically a system planner would intend to
use the PV generation and cheap electricity used to charge the
BESS during off-peak hours to get added return on investment.
These considerations would reduce the total annualized cost
and provided a further incentive for generation expansion.

IV. CASE STUDY

Radial power distribution systems are particularly vulnera-
ble to line outages, since disruption of a single line may cut off
multiple buses from power. The proposed planning method is
tested on the standard IEEE 33-bus system, a 12.66 kV radial
distribution system with total active and reactive power of 3.71
MW and 2.3 MVAR respectively [29]. Numerical solutions
are obtained using CPLEX 12.8.0.0 optimization solver in
MATLAB. All first- and second-order contingencies (one and
two lines disabled, respectively) are simulated using the AC
OPF model to yield the amount of unserved load at each node,
considering all loads as dispatchable. The SOCP model is run
for 528 contingencies. In the planning model, mixed-integer
linear programming (MILP) is used to solve the optimization
problem of minimizing total annual cost for each contingency
scenario. The numerical solution to the MILP problem gives
the optimal plans for all scenarios, which are used as options
in the AHP decision-making stage.

A. Evaluation of Recommended Plans

The cost-effectiveness of each option for all scenarios
is evaluated using (6) and the result is shown in Fig. 3.
Plans are generally the least cost-effective for the first few



Fig. 5. The 33-bus distribution system with top 10 plans implemented, showing rated solar array power and battery capacity along with options.

scenarios, where most of the buses are disconnected from the
only generator bus (bus 1). These are the scenarios with the
highest load shedding and require the most expensive plans.
Comparison of the options on the basis of unserved load,
cost, and utility (normalized with respect to the maximum),
demonstrated in Fig. 4, show that costlier plans supply more
power but generally tend to be less cost-effective. This trend
of diminishing returns means that the planner must consider
the trade-off between performance and cost-effectiveness using
the decision support system described in Section II. Since the
utility score is based on the pairwise comparison of plans,
Fig. 4 indicates that cheaper plans are generally preferable to
expensive ones.

All options are ranked according to their AHP global scores
based on the utility function in (4). The options are not
mutually exclusive and often overlapping. For example, if Plan
A requires a 728-cell solar array and Plan B requires a 1213-
cell solar array at the same bus, then implementing Plan B
is equivalent to combining the two. The planner may choose
to combine multiple options while staying within budget.
Fig. 5 shows the result of implementing the first 10 plans
recommended by AHP. The PV and BESS units are added
preferentially to terminal buses, which are more vulnerable to
load shedding due to being further away from the generation
bus.

B. Coverage Level

The results shown in Figs. 3-5 have assumed that the planner
intends to cover all of the unserved load with additional

Fig. 6. Cost for the top 10 plans for (a) 100% (b) 99% (c) 95% and (d) 80%
coverage.

generation. The effect of reducing the coverage of unserved
load, which may be necessary due to priorities and budget
constraints, is also investigated in this case study. For some
contingency scenarios where the unserved load is too low, the
annualized cost of the optimal plan becomes zero and these
scenarios ignored in the AHP stage. Fig. 6 compares the cost
of the top 10 plans for different levels of coverage. Fig. 7 does
the same thing for total cost-effectiveness, defined as the sum
of CE(i)

j for all contingencies i, revealing a pattern similar to
Fig. 3. The results show a significant reduction in total cost
and cost per unit power as the coverage level is reduced from
100% to 80%. This is the same trend seen in Fig. 3 of more
expensive plans not only costing more in total but also being



Fig. 7. Total cost-effectiveness for (a) 100% (b) 99% (c) 95% and (d) 80%
coverage.

more expensive per kW. The average cost per kW of additional
power capacity, calculated over all the plans and scenarios, is
plotted for a broader range of coverage levels in Fig. 8. It
shows that each unit of resilience enhancement becomes more
expensive as larger proportions of loads are planned for. The
results suggest that costs scale faster than a linear rate, which
planners of large systems should be aware of. The coverage
level is a matter of policy for the planner, as shown in Fig. 1.
In this study, all the loads are assumed to be dispatchable
and equally weighted. A more detailed model could include
weighted loads or partitioning the set into vital and non-vital
loads. This would make some loads more expensive to cover,
based on not just size but also location.

V. CONCLUSION

This paper presents a flexible and generalizable decision-
making framework to enhance the resilience of a power system
against transmission line outages while making the best use
of financial investment. Contingencies are simulated by an AC
OPF model and the results are used as input for the planning
stage, where PV and BESS resources are optimally allocated to
ensure that all loads are supplied at minimum cost. Since mul-
tiple contingencies are being considered and several plans are
possible, AHP is used as a decision support system to choose
between the available alternatives, ranked according to their
cost-effectiveness and performance in various contingency sce-
narios with varying severity. A case study conducted on the 33-
bus radial distribution system demonstrates the effectiveness
of the framework as a decision support tool. Analysis of the
results shows that decision-makers can reduce the cost per
unit power by choosing cheaper generation expansion plans
and allowing some load shedding to occur.

The proposed method offers significant flexibility and trans-
parency for decision-makers. In this study, cost and resilience
have been considered as the determining factors for the util-
ity of alternative plans, but any number of factors may be
included. The utility function may be replaced by a different
formula or an implicit system such as a learning algorithm.
The set of scenarios may be expanded to include higher-order
contingencies. Quantitative analysis reveals patterns that may

Fig. 8. Average cost-effectiveness for different levels of coverage, for 0% to
100%.

help planners make a compromise between cost and resilience,
perhaps through a secondary decision support system based
on their own priorities. Since AHP only uses linear transfor-
mations, it may be scaled up to include more contingencies
and allocation plans without requiring significantly greater
computational power. The list of options in the case study
of Section IV has been limited to the optimal plans for all
scenarios, but the planning model may be expanded to generate
any number of options. The framework developed in this paper
helps decision-makers choose the best generation expansion
strategy to limit cost and maximize resilience. This approach
provides decision-makers with a tool for evaluating multiple
contingency plans and building a resilient power system that
can remain operational despite the occurrence of rare extreme
events.
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