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Abstract—Cybersecurity has become a crucial consideration
in critical power system applications such as automatic gener-
ation control (AGC) due to the increasing use of information
and communication technology. The existing research literature
includes several descriptions of threats from either physics-based
or pure cybersecurity perspectives. A holistic cyber-physical
security assessment method is necessary to guide future decisions
regarding AGC organization. This paper develops an analytical
risk assessment method for integrity attacks on AGC communi-
cation while considering the cyber-physical causal chain. Attack
occurrences and detections are modeled as stochastic events,
while considering their physical impact and modeling accuracy of
mitigation measures. The results provide a holistic cyber-physical
security assessment and recommendations for securing the AGC
system against compromised communications.

Index Terms—Automatic generation control, SCADA, smart
grid, wide area networks.

I. INTRODUCTION

Widespread adoption of information and communication
technology (ICT) in industrial control systems has transformed
the contemporary electric grid is a cyber-physical system
(CPS) where the cyber layer (computers, network devices,
embedded systems) interacts directly with the physical infras-
tructure (machines, transmission lines, switchgear). There is
increased use of ICT in various grid monitoring and control
applications, such as intelligent electronic devices (IEDs) for
advanced measurement, protection, and control capabilities [1]
and the Internet Protocol (IP) for scalable and robust wide
area communication [2]. The cyber-physical paradigm involves
novel security threats and cyber attacks on the power grid
can have severe consequences, especially because traditional
ICT security measures may not be compatible with operational
reliability constraints [2], [3] and specialized protocols used
for monitoring and control [4].

Load frequency control (LFC) is a critical application that
is susceptible to integrity attacks aiming to degrade dynamic
performance and cause instability [5]. Secondary LFC, which
is part of automatic generation control (AGC) and regulates
frequency across multiple areas, provides a higher cyber attack
surface due to the necessity of communication over wide area
networks (WANs). Several authors have provided physics-
based descriptions of attacks on LFC and corresponding

detection and mitigation measures [5]–[7]. Limitations of these
methods include the ability of a deliberate attacker to bypass
known error-checking mechanisms such as bad data detection
and Kalman filtering [8], [9], absence of traditional ICT
security measures such as intrusion detection systems (IDSs)
and failure to account for the cyber mechanisms of attack.

Some authors have approached the topic from a cybersecu-
rity perspective. Process control systems such as AGC tend
to have static topology, regular traffic patterns, and simple
protocols [10]. This enables specification-based detection [11]
that can be augmented by data-driven methods [12]. Many
authors treat the detection module as a centralized application
that can screen the grid for attacks. Specific location of the
detector is considered in some works, such as [13] where the
placement is critical for protection systems. However, location
of detection modules is relevant to AGC attacks as well
due to the existence of network-based attacker vectors such
as denial-of-service (DoS) and man-in-the-middle (MITM)
attack. Host-based detection may be unable to defend against
an attack that blocks or intercepts communication between
two hosts. Network-based detection has been proposed as an
alternative, as in [14] where IDSs are placed at different layers
in the smart grid. Not all attacks generate abnormal traffic
patterns detectable by network-based IDS [15], so a hybrid
implementation involving host-based detection is desirable.

However, true CPS security assessment requires a holistic
approach where cyber events can be related to physical ones
in a manner where the causal chain can be explored. Purely
physics-based methods often fail to account for factors such
as stochasticity and attack vectors, while a heavy focus on the
cyber domain usually lacks direct impact analysis of cyber
attacks in terms of physical consequences.

Evaluating the efficacy of detection schemes requires risk
analysis of cyber attacks. Risk assessment studies are generally
application-specific, focusing on certain attack vectors and
their impact on the power system. A method for security
risk assessment of protection systems is developed in [16].
Game-theoretic stochastic frameworks [17], [18] are used to
account for uncertainty and multiple possible strategies. An
analytical framework for optimizing defensive strategies and
minimizing risk of attacks on AGC was proposed in [17].



Fig. 1. Remote access points for MITM cyber attacks.

Fig. 2. Overview of WAN communication with potential locations for attack
and detectors.

The risk evaluation method in [17] is limited by the use of
a stationary stochastic process and the conditional value-at-
risk approach based on an empirical loss distribution. Since
LFC is a dynamic control application, expected load shedding
does not adequately capture the risk of a disruptive attack.

This paper develops holistic cyber-physical security for
integrity attacks on AGC communication using analytical
risk assessment. The proposed risk assessment methodology
derives risk metrics that quantify the potential impact of com-
promised signals on LFC dynamics. Impact of countermea-
sures against such attacks also needs to be considered, since
AGC is a centralized control application where discarding
an untrusted signal has potential consequences. This study
considers various types of risk related to integrity attacks and
proposes metrics for them. To enable overall interpretation
of risk profile, a composite formula combining the different
categories is also proposed. Section II describes the high-level
model of cyber-physical security and different categories of
risk associated with communication attacks. Section III defines
quantitative risk metrics and describe their respective effects
on system dynamics. Finally, Section IV provides the risk
profiles of an AGC testbed using the proposed analytical risk
assessment method.

II. CYBER-PHYSICAL SECURITY MODEL

A. Detection and Mitigation System

In an industrial control system such as AGC, both ICT-
based and physics-based methods of cyber attack detection
and mitigation are applicable. Physics-based methods rely on
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Fig. 3. Overview of the CPDMS countermeasure against communication
cyber attacks on AGC, shown in terms of information exchange between a
CC and a BA area.

mathematical models of the physical process while ICT-based
methods are only concerned with information flows in the
cyberspace. Therefore, the two types of methods focus on dif-
ferent aspects of cyber attacks, namely the cyber- and physical-
side features. Accurate CPS security assessment requires a
holistic approach where cyber events can be related to physical
ones in a manner where the causal chain can be explored.
Purely physics-based methods often fail to account for factors
such as stochasticity and attack vectors, while a heavy focus on
the cyber domain usually lacks direct impact analysis of cyber
attacks in terms of physical consequences. To overcome their
respective shortcomings, both types of methods are combined
into a general detection and mitigation system, referred to as
a Cyber-Physical Detection and Mitigation System (CPDMS).
CPDMS is used as a general umbrella term that, for the sake
of holistic security assessment, includes the entire suite of
physics- and ICT-based techniques for cyber attack mitigation
and detection.

Figure 3 provides an overview of the proposed CPDMS
architecture to counter communication cyber attacks on infor-
mation exchange between CC and BA. The suffixes “BA” and
“CC” are used to identify the local components or instances
of applications. Implementing CPDMS on both BA and CC
sides provides the flexibility to use detection and mitigation
on either side when information flow in one direction is
compromised. BA and CC components can check incoming
signals but not outgoing ones. While CPDMS-BA can screen
commands sent by the CC, it is unable to check frequency
measurements sent to the CC. Due to the packet encap-
sulation principle of ICT communication protocols, relevant
information that could potentially enable threat detection may
be removed when network traffic passes from a WAN to a
LAN. Therefore, separate WAN components are specified for
CPDMS to check incoming traffic from the WAN.

B. Categories of Risk

In a stochastic model where an intrusion detection system
(IDS) attempts to identify compromised signals, there are four
possible outcomes: true negative (TN), false positive (FP), true
positive (TP), and false negative (FN). A positive identifi-
cation means that the IDS has classified a signal as being
attacked. Detection accuracy is characterized by conditional



probabilities of correctly detecting attacks ptp and mistaking
legitimate signals for compromised ones pfp, obtained from
receiver operating characteristics (ROC) analysis [19] of the
detector. Attack probability pa is the probability of at least
one exposed link being attacked.

An outcome of TN represents normal operation, where no
attack occurs and none is detected. The other three outcomes
can disrupt AGC operation in different ways and are repre-
sented by three different types of risk, as described below:

1) Undetected Attack Risk (UAR): When CPDMS fails to
detect an attack (ie. an FN outcome), the compromised
signal may impact AGC and cause the system frequency
to deviate from normal operation. UAR quantifies the
risk posed by such undetected attacks.

2) False Alarm Risk (FAR): The detector may also mistak-
enly flag an uncorrupted signal (ie. an FP) as an attack
and unnecessarily disrupt frequency control. The impact
of such misdetections is measured by FAR.

3) Blocked Signal Risk (BSR): Although research literature
focusing on ICT-based threats consider risk posed by
FNs and FPs, a third type of risk is posed by TPs in
a synchronous time-critical application such as AGC.
A compromised signal correctly identified by CPDMS
cannot be used since the information it contains can-
not be trusted. However, if the lost signal cannot be
reconstructed with 100% accuracy, this outcome can
potentially impact frequency control, as quantified by
BSR.

It should be noted that different types of risk should be
interpreted differently in terms of impact on system dynamics.
UAR represents the risk of system instability (undamped
oscillations) while FAR and BSR represent the risk of unde-
sirable frequency response which would result in suboptimal
performance. Two scenarios with the same overall risk but
different proportions of UAR, FAR, and BSR are not directly
comparable. However, scenarios can be directly compared
within the same risk category. For example, a scenario with
high UAR is much more likely to be unstable than a scenario
with low UAR.

III. ANALYTICAL RISK ASSESSMENT MODEL

A. Quantitative Risk Metrics

For the purpose of quantitative analysis, this section de-
velops metrics of each type of risk enumerated in Section
II-B. The proposed metrics possess the quality of ergodicity,
ensuring convergence to a fixed value for a given probability
distribution instead of random variations caused by differing
outcomes of the stochastic process.

1) Undetected Attack Risk: The general state-space repre-
sentation of communication-based attacks, shown in Appendix
A, is the basis of the UAR metric, which captures the impact
of undetected attacks on frequency dynamics. A more detailed
derivation is presented in [20].

A system that has eigenvalues with real positive part ατ will
be unstable. In this case, the eigenvalues may change from one

interval to another, since ατ is a function of ωτ . Therefore,
instead of a single eigenvalue, a series of eigenvalues needs to
be considered. The formula in 14 suggests that the final state
depends on e(

∑T
τ=1 ατ). Therefore the sum

∑T
τ=1 ατ , where

ατ = λmax(Aτ ) is the largest eigenvalue of Aτ , represents the
risk to the system over T successive periods.

UAR = lim
T→∞

1

T

T∑
τ=1

ατ =
∑
ω∈Ω

pωαω (1)

Since ατ is a random variable, its summation over a fixed
set of periods does not converge and is therefore not ergodic.
However, the time-average of ατ over T periods does converge
to its expectation value, which is the sum of eigenvalues
weighted by outcome probabilities, as T approaches infinity.
This quantity is used to define UAR as shown in (1), where
pω and αω represent the probability and largest eigenvalue for
scenario ω respectively.

2) False Alarm Risk: It is expected that the attacker will
modify Aτ to ensure that unstable eigenvalues exist for FN
outcomes. In case of FPs and TPs, where such eigenvalues are
unlikely to exist in a properly designed controller, the UAR
metric does not provide a useful measure of risk.

FAR = (1− θ)
∑
ω∈Ω

pωn
(ω)
FP (2)

Instead, FAR is expressed using the formula in (2), which
is the expectation value of the number of FPs nFP multiplied
by reconstruction error rate. A high reconstruction accuracy θ
can reduce FAR by decreasing reliance on ACE commands.

3) Blocked Command Risk: Similar to FAR, BSR is defined
using the number of TPs nTP as follows:

BSR = (1− θ)
∑
ω∈Ω

pωn
(ω)
TP (3)

To determine the overall risk profile, UAR, FAR, and BSR
must be combined into a single formula, where the different
types of risk are assigned their respective weights. The weights
are assigned on the basis of how significant each type of risk is,
which is determined by the outcome of the stochastic process
and its impact of frequency dynamics.

B. Impact of Various Types of Risk

1) Precision and Recall: Significance of outcomes is quan-
tified by the precision (P = TP

TP+FP ) and recall (R =
TP

TP+FN ) ratios, which measure the ability to avoid false
alarms and undetected attacks respectively. Precision and recall
depends on the probabilities pa, ptp and pfp. However, their
relative proportions can be used to assign weights.

Table I shows the situations where different types of risk
become more significant. With fewer FPs and higher FNs (high
precision, low recall), the key threat to the system is posed by
UAR. When the reverse is true (low precision, high recall),
the large number of FPs drives up the significance of FAR.
When both precision and recall have moderate values, which



TABLE I
WEIGHTS ASSIGNED TO RISK CATEGORIES BASED ON PRECISION AND

RECALL

Precision (P) Recall (R) Weight Risk

high low P
P+R

UAR

low high R
P+R

FAR

medium medium 2 PR
P+R

BSR
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Fig. 4. Total risk plotted against detection accuracy ptp for different values
of attack probability pa.

is desirable in an accurate detection system, BSR becomes the
most prominent type of risk. Accordingly, each type of risk is
assigned a weight which is maximized when it becomes the
most significant contributor to overall risk.

2) Dynamic Impact on Frequency Response: A second
factor to consider is the impact of each type of error on
frequency dynamics. It is expected that in case of an attack
capable of inducing system instability, FNs will have a much
larger impact than FPs and TPs. The impulse response of the
system in scenario ω is used as a measure of the impact on
frequency response.

IRω = |1− gωhωθω|
β

TchTgM
(4)

The initial non-zero impulse response IR for the state-space
model described in Appendix A under outcome ω is given by
(4), where gω , hω and θω are attack and defense parameters
from the model described in A-B, specific to the scenario
ω. The remaining parameters are from the linearized LFC
dynamic model that has been used as the basis of many studies
including [5]: β is the frequency bias factor in the AGC loop,
and Tg , Tch and M are constants from the governor control
loop. A detailed derivation of this expression can be found in
[20].

3) System Inertia Characteristics: Aside from stochastic
outcomes, the frequency response characteristics of the system
also determines the level of risk. Low-inertia systems are
more vulnerable than high-inertia ones to the same cyber

attack vectors, since the same power demand fluctuations will
generally cause larger frequency fluctuations. The concept of
measured effective inertia [21] is included in the weights to
account for frequency response characteristics. This will allow
proper comparison between systems with different levels of
inertia.

MEI =

∫ t
t0

∆PD(t)dt

∆f(t)
(5)

Measured effective inertia (MEI) of the system is expressed
in (5) as the ratio of power change ∆PD to frequency
change ∆f . MEI under normal operation (no attacks and no
detection events) is used to linearly scale the overall risk,
since it is applicable regardless of the stochastic outcomes.
The reciprocal of MEI assigns a higher weight to high-risk
low-inertia systems.

4) Composite Formula for Overall Risk:

WUAR =
P

P +R
× IRFN ×

1

MEI
(6)

WFAR =
R

P +R
× IRFP ×

1

MEI
(7)

WBSR = 2
PR

P +R
× IRTP ×

1

MEI
(8)

Total Risk = WUARUAR +WFARFAR +WBSRBSR (9)

Both IR and MEI are averaged over multiple BA areas.
Weights for the three categories of risk are assigned as shown
in (6)–(8). The overall risk, given by (9), is calculated as the
weighted sum of the different types of risk.

IV. SIMULATION RESULTS AND ANALYSIS

For this study, we are concerned with high-impact attacks
that can severely disrupt grid operation. Some attacks have
minimal effects on frequency stability and therefore are not
considered. From the four basic injection patterns described in
[17] by Law et al., the overcompensation and negative com-
pensation patterns are used in this study. In this attack pattern,
frequency control is disrupted by modifying the measurements
and command by a scaling factor. Overcompensation (positive
scaling factor) is found to have relatively small effect on
frequency response. Although the effect might be increased by
using higher scaling factors, multiple researchers [7], [8], [22]
have observed that arbitrarily high modifications of signals
raises the likelihood of physics-based detection. Therefore,
as commented in [17], it is logical to assume some realistic
constraints on the capabilities of an adversary.

Risk assessment metrics defined in Section III are calculated
for different values of attack probability, detection accuracy
for attacks and estimation accuracy for blocked commands.
The quantitative model includes the threat posed by both ad-
versarial actions (allowing compromised commands) and cor-
responding countermeasures (blocking untrusted commands).
The IEEE 39-bus system, divided into 3 balancing authority
areas, is used as the AGC test system for this study.
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Fig. 5. Risk profile for various categories and overall metric plotted against attack probability pa for different values of detection accuracy ptp, with fixed
estimation accuracy θ = 0.8.
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Fig. 6. Total risk to the system with varying pa for (a) θ = 0.9, and (b) θ = 0.5.

A. Attack Probability and Detection Accuracy

In Figure 5, as the probability of attack increases, UAR and
BSR rise while FAR declines. Increasing detection accuracy
ptp also raises pfp, leading to increase in both BSR and FAR,
although the total risk decreases due to the declining number
of FNs. The risk profile in Figure 5(d) indicates that in an
extreme case, with a high FP rate (33.6%) and low attack
probability (pa ≈ 0), the total risk is higher for CPDMS than
the system with no countermeasures. However, generally the
CPDMS significantly lowers the system risk across the full
range of attack frequency values. The same trend is observed

when total risk is plotted against ptp in Figure 4. In the
vast majority of cases, the risk declines with increasing ptp.
Only when the detection accuracy approaches 100% and attack
probability is relatively low (pa ≤ 0.25) does the risk increase
slightly.

B. Estimation Accuracy for Blocked Signals

Risk assessment using the proposed method indicates that
higher detection accuracy is generally favored in securing the
power grid against attacks on AGC communication. However,
the results so far have assumed the estimation accuracy of
blocked signals to be fixed at 80%. Setting θ = 0.8 means that
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Fig. 7. Total risk to the system with varying ptp for (a) θ = 0.9, and (b) θ = 0.5.
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Fig. 8. Risk profile for various categories and overall metric plotted against attack probability pa for different values of detection accuracy ptp, with fixed
estimation accuracy θ = 0.8, when frequency deviation measurements are attacked instead of control commands to the generators.

for each blocked signal (both FPs and TPs) the change in load
references setpoints for generators in the affected BA area is
80% of its actual value. Figure 6 demonstrates the significant
effect of estimation accuracy on the risk profile when all other
parameters are equal. While a high estimation accuracy (90%)
causes the familiar pattern of declining risk with high ptp,
setting θ = 0.5 results in a more ambiguous pattern where
higher ptp does not correspond to lower risk, even at high
attack frequencies. Low estimation accuracy results in high
FAR at low pa and high BSR at high pa, which combine
to match or exceed UAR. Reducing the estimation accuracy

reverses the pattern of declining risk for rising detection
accuracy, as shown in Figure 7, as well as increasing overall
risk.

As discussed in Section II-B, actual impact on frequency
dynamics depends on the type of risk. Although Figures 6
and 7 appear to indicate that an inaccurate estimator makes
low detection accuracy (or even no detection at all) preferable,
it should be noted that UAR remains the same in both cases.
Low θ causes FAR and BSR to increase, thus increasing total
risk. While the risk of instability remains the same, higher ptp
leads to greater risk of undesirable deviation from nominal



frequency.

C. Effect of Attack Injection Point

Cyber attacks on AGC communications may target ei-
ther measurements or commands. In the modified state-space
model described in Appendix A, the scaling factors gi and
hi change the frequency deviation and control input for the
i-th BA area, respectively. The results so far have used
h = −1, since modifying the commands was observed to have
greater impact on risk metrics and frequency dynamics. In this
section, the alternative method of using g = −1 is studied to
demonstrate the effect of altering the injection point. In case
of corrupted measurements, the detection is assumed to take
place on the CC side, so that the centralized CPDMS-CC is
used instead of decentralized CPDMS-BA (see Figure 3).

Risk metrics for g = −1, shown in Figure 8, are markedly
different than the case of h = −1 (as shown in Figure 5)
for the same values of pa and ptp. Both FAR and BSR are
higher because centralized detection raises both TP and FP
rates while reducing FN rate. However, since UAR is close
to zero, total risk is much lower. The plots in Figure 8 show
that FAR and BSR account for most of the risk profile and
frequency instability is unlikely.

D. Incentive for Decentralized Control

The numerical results presented in this section indicate that
minimizing risk of instability and frequency fluctuations under
varying conditions of attack requires maximization of both
detection and estimation accuracy. A highly accurate detection
system paired with an inaccurate mitigation system degrades
performance during periods of low cyber threat. On the other
hand, the absence or low accuracy of detectors exposes the sys-
tem to potential instability when a non-negligible cyber threat
exists. Both kinds of risk can only be minimized by improving
the accuracy of detection and mitigation simultaneously. This
observation provides an indirect argument for decentralization
in power system control applications.

V. CONCLUSION

Cybersecurity threats have become a prominent consider-
ation for the modern smart grid, which relies increasingly
on ICT for many control applications. This study presents a
risk assessment method for integrity attacks on AGC, which
is a fully automated control application designed to function
without human operators. The proposed metrics, based on
various types of risk and their respective impacts on frequency
dynamics, use analytical formulae derived from probability
distributions of adversarial activity and detection accuracy. The
focus of this study was the quantification of high-risk factors
by developing suitable metrics for different types of risk. Roles
played by the various risk categories is demonstrated by the
simulation results, which show the effects of changing attack
probability, detection accuracy, and estimation accuracy for
blocked signals. The results also indicate that the attack causal
chain is also an influencing factor, since attacking frequency
deviation measurements was observed to pose significantly

lower risk of disruption. The study indirectly provides support
for increasing decentralization of control, since accurate esti-
mation of blocked or corrupt signals can alleviate risk posed
by cyber attacks irrespective of other factors.

APPENDIX A
STATE-SPACE REPRESENTATION OF COMMUNICATION

ATTACKS

A. Recursive State Transition Function
The mathematical model of linearized LFC dynamics has

been used to study cyber attacks and can be found in studies
such as [5]. For simplicity, let us consider one possible
solution from the fundamental set of solutions and assume
xτ (t) = cτvτe

λτ t for time interval τ . Since the general
solution is a linear combination of such solutions, the results
can be generalized. For a complex eigenpair with eigenvalue
λτ = ατ + βi and eigenvector vτ = aτ + bτ i, the solution is

xτ (t) =c1,τe
ατ t(aτ cosβτ t− bτ sinβτ t)+

c2,τe
ατ t(aτ sinβτ t− bτ cosβτ t) (10)

The system can be defined recursively as

xτ+1 = (Qτ+1 + pτ+1xτ )eατ+1∆t (11)
pτ = cosβτ∆t (12)

Qτ = (c2,τaτ − c1,τbτ ) sinβτ∆t (13)

where xτ is the state of the system at the end of the τ -th
time interval. Let x0 be the state at the start of the first interval
(τ = 1). Then the state after T intervals can be expressed as

xT =QT e
αT∆t + x0

T∏
τ=1

pτe
ατ∆t+

T−2∑
k=1

(
T∏

τ=T−k+1

pτe
ατ∆t

)
QT−ke

αT−k∆t (14)

Unlike pτ , Qτ for a particular interval is not independent
of previous time periods, since the coefficients c1,τ and c2,τ
depend on the initial state at the start of the interval, which in
turn depends on the preceding interval.

B. Communication Attack Model
A broad class of attacks can be modeled mathematically by

modifying the state-space equations. The change in the state-
space modeled is based on the outcome of a stochastic process,
as described in Section II-B. Two matrices Gτ and Hτ ,
which contain random variables from the stochastic process,
model the injection attack on measurements and commands
respectively, while Mτ models the defensive action. The
modified state-space model is given by:

yτ (t) = CGτxτ (t) (15)
uτ (t) = −HτKCGτxτ (t) (16)
ẋτ (t) = (A−BΘτHτKCGτ )xτ (t) (17)



Aτ =


−Di
Mi

− 1
Mi

1
Mi

0 0

2π
∑
j 6=i Tij 0 0 0 0

0 0 − 1
Tchi

1
Tchi

0

− 1
RiTgi

− f(θi)higiβiKPi
Tgi

− f(θi)hiKPi
Tgi

0 − 1
Tgi

− f(θi)hiKIi
Tgi

βi 1 0 0 0

 ∈ R5×5 (18)

Both Gτ and Hτ linearly scale the target variables. Gτ

modifies frequency deviation ∆f measurements while Hτ

scales the load references setpoints for generators. In case
of a positive detection, estimation accuracy for the expected
command is given by Θτ , which is a function of the re-
construction accuracy θ. Hi = [hi] and Θi = [f(θi)] are
scalars while Gi = diag(gi, 1, 1, 1, 1) is a diagonal matrix
containing the scaling factors for the i-th BA area. Denoting
Aτ = A−BΘτHτKCGτ , the individual matrix elements in
the modified system are shown below. The eigenvalues of Aτ

in (18) determine system behavior for various τ , depending
on the outcome of the stochastic process.
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